Takes an image and applys a convolution operation to it, using a user-supplied or built-in kernel. Edges are calculated by limiting the size of the kernel to only that overlapping the actual image (renormalizing the kernel for the edges).
render_convolution(
image,
kernel = "gaussian",
kernel_dim = 11,
kernel_extent = 3,
absolute = TRUE,
min_value = NULL,
filename = NULL,
preview = FALSE,
gamma_correction = FALSE,
progress = FALSE
)
Image filename or 3-layer RGB array.
Default gaussian
. By default, an 11x11 Gaussian kernel with a mean
of 0
and a standard deviation of 1
, running from -kernel_extent
to kernel_extent
.
If numeric, this will be the standard deviation of the normal distribution. If a
matrix, it will be used directly as the convolution kernel (but resized always to be an odd number
of columns and rows).
Default 11
. The dimension of the gaussian
kernel. Ignored
if user specifies their own kernel.
Default 3
. Extent over which to calculate the kernel.
Default TRUE
. Whether to take the absolute value of the convolution.
Default NULL
. If numeric, specifies he minimum value (for any color channel)
for a pixel to have the convolution performed.
Default NULL
. The filename of the image to be saved. If this is not given, the image will be plotted instead.
Default TRUE
. Whether to plot the convolved image, or just to return the values.
Default TRUE
. Controls gamma correction when adding colors. Default exponent of 2.2.
Default TRUE
. Whether to display a progress bar.
3-layer RGB array of the processed image.
if(run_documentation()){
#Perform a convolution with the default gaussian kernel
plot_image(dragon)
}
if(run_documentation()){
#Perform a convolution with the default gaussian kernel
render_convolution(dragon, preview = TRUE)
}
if(run_documentation()){
#Increase the width of the kernel
render_convolution(dragon, kernel = 2, kernel_dim=21,kernel_extent=6, preview = TRUE)
}
if(run_documentation()){
#Perform edge detection using a edge detection kernel
edge = matrix(c(-1,-1,-1,-1,8,-1,-1,-1,-1),3,3)
render_convolution(render_bw(dragon), kernel = edge, preview = TRUE, absolute=FALSE)
}
if(run_documentation()){
#Perform edge detection with Sobel matrices
sobel1 = matrix(c(1,2,1,0,0,0,-1,-2,-1),3,3)
sobel2 = matrix(c(1,2,1,0,0,0,-1,-2,-1),3,3,byrow=TRUE)
sob1 = render_convolution(render_bw(dragon), kernel = sobel1)
sob2 = render_convolution(render_bw(dragon), kernel = sobel2)
sob_all = sob1 + sob2
plot_image(sob1)
plot_image(sob2)
plot_image(sob_all)
}
if(run_documentation()){
#Only perform the convolution on bright pixels (bloom)
render_convolution(dragon, kernel = 5, kernel_dim=24, kernel_extent=24,
min_value=1, preview = TRUE)
}
if(run_documentation()){
#Use a built-in kernel:
render_convolution(dragon, kernel = generate_2d_exponential(falloff=2, dim=31, width=21),
preview = TRUE)
}
if(run_documentation()){
#We can also apply this function to matrices:
volcano |> image()
volcano |>
render_convolution(kernel=generate_2d_gaussian(sd=1,dim=31)) |>
image()
}
if(run_documentation()){
#Use a custom kernel (in this case, an X shape):
custom = diag(10) + (diag(10)[,10:1])
plot_image(custom)
render_convolution(dragon, kernel = custom, preview = TRUE)
}